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Chapter 1

Limit and Continuity

1.1 Definition of Limit
As the precise definition of a limit is a bit technical, it is easier to start with an informal defi-
nition; we’ll explain the formal definition later.

We suppose that a function f is defined for x near c (but we do not require that it be defined
when x = c).

Definition 1.1: (Informal definition of a limit)

We call L the limit of f(x) as x approaches c if f(x) becomes close to L when x is close
(but not equal) to c , and if there is no other value L′ with the same property.
When this holds we write

lim
x→c

f(x) = L

or
f(x)→ L as x→ c

Notice that the definition of a limit is not concerned with the value of f(x) when x = c (which
may exist or may not). All we care about are the values of f(x) when x is close to c , on either
the left or the right (i.e. less or greater).

Definition 1.2

Let f be a function defined on some open interval that contains the number c, except
possibly at c itself. Then we say that the limit of f as x approaches c is L, and we write

lim
x→c

f(x) = L

if for every number ε > 0 there is a number δ > 0 such that

if 0 <| x− c |< δ then | f(x)− L |< ε

Since | x− c | is the distance from x to c and | f(x)− L | is the distance from f(x) to L,and ε
can be arbitrarily small, the definition of a limit can be expressed in words as follows:
lim
x→c

f(x) = L means that the distance between f(x) and L can be made arbitrarily small by
taking the distance from x to a sufficiently small (but not 0’s).
Alternatively, lim

x→c
f(x) = L means that the values of f(x) can be made as close as we please

to L by taking x close enough to c (but not equal to c). We can also reformulate definition in
terms of intervals by observing that the inequality | x− c |< δ is equivalent to −δ < x− c < δ

2



1.1. DEFINITION OF LIMIT DBU

Figure 1.1: The ε− δ definition of the limit of f(x) as x approaches a

, which in turn can be written as c − δ < x < c + δ. Also 0 <| x − c | is true if and only if
x− c 6= 0 , that is, x 6= a. Similarly, the inequality | f(x)− L |< ε is equivalent to the pair of
inequalities L− ε < f(x) < L + ε. Therefore, in terms of intervals, definition can be stated as
follows:
lim
x→c

f(x) means that for every ε > 0 (no matter how ε is small) we can find δ > 0 such that if x
lies in the open interval (c− δ, c+ δ) and x 6= c, then f(x) lies in the open interval (L− ε, L+ ε)

Example 1.1

Prove that lim
x→3

(4x− 5) = 7.
Solution:-
Let ε be a given positive number. We want to find a number δ such that
|(4x − 5) − 7| < ε whenever 0 < |x − 3| < δ. But |(4x − 5) − 7| = |4x − 12| = 4|x − 3|.
Therefore, we want 4|x− 3| < ε whenever |x− 3| < δ this implies |x− 3| < ε

4 whenever

|x− 3| < δ This suggests that we should choose δ = ε

4 .

c© Dejen K. 2020 3



1.1. DEFINITION OF LIMIT DBU

Example 1.2

Using formal definition of limit prove that lim
x→2

x2 = 4
Solution:
We must show that for any ε > 0 there exists δ > 0 such that |x2 − 4| < ε when ever
0 < |x− 2| < δ Factoring, we get |x2 − 4| = |x− 2||x+ 2| we want to show that |x2 − 4|
is small when x is close to 2. To do this, we first find an upper bound for the factor
|x + 2|. If x is close to 2, we know that the factor |x − 2| is small, and that the factor
|x + 2| is close to 4. Because we are considering values of x close to 2s, we can concern
ourselves with only those values of x for which |x− 2| < 1; that is, we are requiring the
δ, for which we are looking, to be less than or equal to 1. The inequality |x − 2| < 1
is equivalent to −1 < x − 2 < 1 which is equivalent to 1 < x < 3 or, equivalently,
3 < x + 2 < 5. This means that if |x − 2| < 1, then 3 < |x + 2| < 5 therefore, we have
|x2−4| = |x−2||x+2| < 5|x−2|. Now we want 5|x−2| < ε or, equivalently |x−2| < 1

5ε.

Thus, if we choose δ to be the smaller of 1 and ε

5 , then when ever |x− 2| < δ, it follows

that |x−2| < 1
5ε and |x+2| < 5 because this is true when |x−2| < 1 and so |x2−4| < ε

5 .
Therefore, we conclude that |x2 − 4| < ε whenever 0 < |x − 2| < δ if δ is the smaller of
the two numbers 1 and ε

5 , which we write as δ = min(1, ε5).

Exercise 1.1

Prove that

a) lim
x→3

(−2x+ 7) = 1 b) lim
x→0

x2

x2 + 1 = 0, c) lim
x→3

(x2) = 9
d) lim

x→−3
(x2 − 9) = 0, e) lim

x→0
(x2) = 0 f) lim

x→a
(−bx+ c)− ab+ c

1.1.1 Basic limit theorems
Theorem 1.1

Operational Identities for Limits Suppose that lim
x→c

f(x) = L and lim
x→c

g(x) = M and that
k is constant. Then

• lim
x→c

k · f(x) = k · lim
x→c

f(x) = k · L

• lim
x→c

[
f(x) + g(x)

]
= lim

x→c
f(x) + lim

x→c
g(x) = L+M

• lim
x→c

[
f(x)− g(x)

]
= lim

x→c
f(x)− lim

x→c
g(x) = L−M

• lim
x→c

[
f(x) · g(x)

]
= lim

x→c
f(x) · lim

x→c
g(x) = L ·M

• lim
x→c

f(x)
g(x) =

lim
x→c

f(x)
lim
x→c

g(x) = L

M
provided M 6= 0

c© Dejen K. 2020 4



1.1. DEFINITION OF LIMIT DBU

1.1.2 Direct Substitution Property
If f(x) is a polynomial or a rational function and a is in the domain of f(x) , then

lim
x→a

f(x) = f(a)

Example 1.3

1. Evaluate the following limits and justify each step.

(a) lim
x→5

2x2 − 3x+ 4

(b) lim
x→4

3

√ x

−7x+ 1

Solution:

1. (a)

lim
x→5

(2x2 − 3x+ 4) = lim
x→5

(2x2)− lim
x→5

(−3x) + 4 (by rule 1 and 2)

= 2 lim
x→5

x2 − 3 lim
x→5

x+ 4 (by rule 3 and 7)

= 2(52)− 3(5) + 4 (by rule 9)
= 50− 15 + 4
= 39

(b)

lim
x→4

3

√
x

−7x+ 1 = 3

√
lim
x→4

[ x

−7x+ 1] (by low 11)

= 3

√
limx→4 x

limx→4(−7x+ 1) (by low 5)

= 3

√
4

−7(4) + 1 (by low 3,9 and 1)

= 3

√
4
−27

= −
3
√

4
3

Theorem 1.2

If f(x) 6 g(x) when x is near a (except possibly at a ) and the limits of f and g both
exist as x approaches a, then

lim
x→a

f(x) 6 lim
x→a

g(x)

c© Dejen K. 2020 5



1.1. DEFINITION OF LIMIT DBU

Theorem 1.3: Squeeze Theorem

If f(x) 6 g(x) 6 h(x) when x is near a (except possibly at a ) and

lim
x→a

f(x) = lim
x→a

h(x) = L then lim
x→a

g(x) = L

which is sometimes called the Sandwich Theorem.

Example 1.4: S

ow that lim
x→0

x2 sin 1
x

= 0
Solution:First note that we cannot use

lim
x→0

x2 sin 1
x

= lim
x→0

x2 · lim
x→0

sin 1
x

because lim
x→0

sin 1
x

does not exist. However, since

−1 ≤ sin 1
x
≤ 1

Multiply both side by x2 we get

−x2 ≤ x2 sin 1
x
≤ x2

We know that lim
x→0
−x2 = 0 and lim

x→0
x2 = 0 taking f(x) = −x2, h(x) = x2 and g(x) =

x2 sin 1
x

by the Squeeze theorem, we obtain

lim
x→0

x2 sin 1
x

= 0

c© Dejen K. 2020 6



1.1. DEFINITION OF LIMIT DBU

Example 1.5

Show that
lim
θ→0

sin θ
θ

= 1

Proof: To show that the limit is 1, we begin with positive values of θ less than π. Notice
that from the following figure

We have Area 4OAP 6 Area sector OAP 6 Area 4OAT . We can express these areas
in terms of θ as follows:

Area 4OAP = 1
2base× hieght = 1

2(1)(sin θ) = sin θ
2

Area sector OAP = 1
2r

2θ = 1
2(12)(θ) = θ

2
area 4OAT = 1

2base× hieght = 1
2(1)(tan θ) = tan θ

2

Thus sin θ
2 6

θ

2 6
tan θ

2 .
This last inequality goes the same way if we divide all three terms by the number 2

sin θ
which is positive since 0 < θ < π/2

1 6
θ

sin θ 6
1

cos θ

Taking reciprocals reverses the inequalities:

1 >
sin θ
θ

>
cos θ

1

Since lim
θ→0

cos θ
1 = 1 and lim

θ→0
1 = 1 then by the Sandwich theorem gives

lim
θ→0

sin θ
θ

= 1

Recall that sin θ and θ are both odd functions . Therefore,f(θ) = sin θ
θ

is an even function,
with a graph symmetric about the y-axis (see the above figure). This symmetry implies
that the left-hand limit at 0 exists and has the same value as the right-hand limit:

lim
θ→0+

sin θ
θ

= 1 = lim
θ→0−

sin θ
θ

So lim
θ→0

sin θ
θ

= 1

c© Dejen K. 2020 7



1.1. DEFINITION OF LIMIT DBU

1.1.3 One sided limits
Definition 1.3

Let f be a function which is defined at every number in some open interval (a, c). Then
the limit of f(x), as x approaches from the right a, is L, written

lim
x→a+

f(x) = L

if for any ε > 0, however small, there exists a δ > 0 such that |f(x) − L| < ε whenever
0 < x− a < δ

Example 1.6

using the definition to prove that lim
x→0+

√
x = 0

Solution:

1. Guessing a value for δ. Let ε be a given positive number. Here a = 0 and L = 0 so
we want to find a number δ such that |

√
x− 0| < ε whenever 0 < x− 0 < δ that is√

x < ε whenever 0 < x < δ or, squaring both sides of the inequality
√
x < ε, we

get x < ε2 whenever 0 < x < δ. This suggests that we should choose δ = ε

2. Showing that this δ works. Given ε > 0, let δ = ε2. If 0 < x < δ, then
√
x <√

δ =
√
ε2 = ε. So |

√
x − 0| < ε. According to the definition, this shows that

limx→0+
√
x = 0

Definition 1.4

Let f be a function which is defined at every number in some open interval (d, a). Then
the limit of f(x), as x approaches from the left a, is L, written

lim
x→a−

f(x) = L

if for any ε > 0, however small, there exists a δ > 0 such that
|f(x)− L| < ε whenever −δ < x− a < 0

Example 1.7

Show that lim
x→4−

√
4− x = 0

Solution: For every ε > 0 we need to find a δ > 0 such that if −δ < x − 4 < 0 then
|
√

4− x− 0| < ε. Since |
√

4− x− 0| = |
√

4− x| < ε ⇒ |4−x| < ε2 ⇒ −ε2 < (x− 4) <
ε2 ⇒ −ε2 < (x− 4) < 0 then if −δ < (x− 4) < 0 then −ε2 < (x− 4) < 0. This suggests
that we should choose δ = ε2. Therefore, we conclude that

lim
x→4−

√
4− x = 0

Theorem 1.4

lim
x→c

f(x) = L if and only if

lim
x→c+

f(x) = L = lim
x→c−

f(x)

c© Dejen K. 2020 8



1.1. DEFINITION OF LIMIT DBU

Exercise 1.2

Show that a) lim
x→0
|x| = 0 and limx→0

|x|
x

does not exist.

1.1.4 Infinite limits, limit at infinity and asymptotes
Definition 1.5

Let f(x) be a function defined on some open interval that contains the number a, except
possibly at a itself. Then

i lim
x→a+

f(x) =∞ means that for every positive number M there is a positive number
δ such that f(x) > M whenever 0 < x− a < δ

ii lim
x→a−

f(x) =∞ means that for every positive number M there is a positive number
δ such that f(x) > M whenever −δ < x− a < 0

iii lim
x→a

f(x) =∞ means that for every positive number M there is a positive number
δ such that f(x) > M whenever |x− a| < δ

Example 1.8

By using the definition prove that limx→0
1
x2 =∞

Solution: Let M be given large number, we want to find a δ > 0 such that f(x) > M

when ever 0 < |x − 0| < δ or 1
x2 > M when ever 0 < |x| < δ that is, x2 <

1
M

when

ever 0 < |x| < δ or |x| < 1√
M

when ever 0 < |x| < δ. This suggests that we should take

δ = 1√
M

. Therefore lim
x→0

1
x2 =∞.

Definition 1.6

Let f(x) be a function defined on some open interval that contains the number a, except
possibly at a itself. Then

i lim
x→a+

f(x) = −∞means that for every negative numberN there is a positive number
δ such that f(x) < N whenever 0 < x− a < δ

ii lim
x→a−

f(x) = −∞means that for every negative numberN there is a positive number
δ such that f(x) < N whenever −δ < x− a < 0

iii lim
x→a

f(x) = −∞ means that for every negative number N there is a positive number
δ such that f(x) < N whenever 0 < |x− a| < δ

c© Dejen K. 2020 9



1.1. DEFINITION OF LIMIT DBU

Example 1.9

Show that limx→0−
1
x

= −∞
Solution: Let N be given negative small number, we want to find a δ > 0 such that
f(x) < N when ever −δ < x − 0 < 0 or 1

x
< N when ever −δ < x − 0 < 0 that is,

x >
1
N

when ever −δ < x < 0. This suggests that we should take δ = − 1
N

. Therefore

limx→0−
1
x

= −∞.

Definition 1.7

We say that f(x) has the limit L as x approaches infinity and write

lim
x→∞

f(x) = L

if, for every number ε > 0 there exists a corresponding positive number M such that for
all x

x > M ⇒ |f(x)− L| < ε

Example 1.10

Show that
lim
x→∞

1
x

= 0

Solution: Let ε > 0 be given. We must find a positive number M such that for all x

x > M ⇒ |1
x
− 0| = |1

x
| < ε

x > M ⇒ x >
1
ε

because x is positive . The implication will hold if M = 1
ε

or any larger
positive number. This proves that

lim
x→∞

1
x

= 0

Definition 1.8

We say that f(x) has the limit L as x approaches negative infinity and write
if, for every number ε > 0 there exists a corresponding negative number N such that for
all x

x < N ⇒ |f(x)− L| < ε

c© Dejen K. 2020 10



1.1. DEFINITION OF LIMIT DBU

Example 1.11

Show that
lim

x→−∞

1
x

= 0

Solution: Let ε > 0 be given. We must find a negative number N such that for all x

x < N ⇒ |1
x
− 0| = |1

x
| < ε

x < N ⇒ x < −1
ε

because x is negative. The implication will hold if N = −1
ε

or any
small number. This proves that

lim
x→−∞

1
x

= 0

Theorem 1.5

Suppose that c is a constant and the limits lim
x→±∞

f(x) = L and lim
x→±∞

g(x) = M exist.
Then

1. Sum rule lim
x→±∞

[f(x) + g(x)] = lim
x→±∞

f(x) + lim
x→±∞

g(x) = L+M.

2. Difference rule lim
x→±∞

[f(x)− g(x)] = lim
x→±∞

f(x)− lim
x→±∞

g(x) = L−M.

3. Constant Rule lim
x→±∞

[cf(x)] = c lim
x→±∞

f(x) = cL.

4. Product Rule lim
x→±∞

[f(x)g(x)] = lim
x→±∞

f(x) lim
x→±∞

g(x) = LM.

5. Quotient Rule lim
x→±∞

[f(x)
g(x) ] = limx→±∞ f(x)

lim
x→±∞

g(x) = L

M
if lim

x→±∞
g(x) 6= 0.

c© Dejen K. 2020 11



1.1. DEFINITION OF LIMIT DBU

Example 1.12

Using the above theorem evaluate the following limits at infinity

a). lim
x→∞

√
4x2 + 2
3x+ 1

b). lim
x→∞

x2 + 1
2x− 3

Solution: a).

lim
x→∞

√
4x2 + 2
3x+ 1 = lim

x→∞

√
x2(4 + 1

x2 )

x(3 + 1
x

)

= lim
x→∞

√
(4 + 1

x2 )

(3 + 1
x

)

=

√
lim
x→∞

(4 + 1
x2 )

lim
x→∞

(3 + 1
x

)

=

√
( lim
x→∞

4 + lim
x→∞

1
x2 )

( lim
x→∞

3 + lim
x→∞

1
x

)

=

√
(4 + 0)

(3 + 0)

= 2
3

b).

lim
x→∞

x2 + 1
2x− 3 = lim

x→∞

x+ 1
x

2− 3
x

=
lim
x→∞

x+ lim
x→∞

1
x

lim
x→∞

2− lim
x→∞

3
x

= ∞+ 0
2− 0

= ∞2
=∞

Definition 1.9

The line y = b is called a horizontal asymptote of the curve y = f(x) if either
lim
x→∞

f(x) = b or/and lim
x→−∞

f(x) = b

Example 1.13

Find lim
x→∞

1
x

and lim
x→−∞

1
x

.
Solution: Observe that when is large, is small. For instance, In fact, by taking large
enough, we can make as close to 0 as we please. Therefore, according to Definition , we
have Similar reasoning shows that when x is large negative, 1/x.

Definition 1.10

A line x = a is a vertical asymptote of the graph of a function y = f(x) if either
lim
x→a+

f(x) = ±∞ or/and lim
x→a−

f(x) = ±∞

c© Dejen K. 2020 12



1.1. DEFINITION OF LIMIT DBU

Example 1.14

Find lim
x→3−

( 2x
x− 3) and lim

x→3+
( 2x
x− 3).

Solution: If x is close to 3 but larger than 3, then the denominator x − 3 is a small
positive number and 2x is close to 6. So the quotient 2x/x−3 is a large positive number.

lim
x→3+

( 2x
x− 3) =∞

Likewise If x is close to 3 but smaller than 3, then the denominator x − 3 is a small
negative number and 2x is close to 6. So the quotient 2x/x−3 is a large negative number.

lim
x→3−

( 2x
x− 3) = −∞

The graph of the curve y = 2x
x− 3 is given in the following figure. The line is a vertical

asymptote.

Example 1.15

Find the vertical and horizontal asymptotes for the graph of

a). f(x) =
√
x2 + 2
x− 1

b). f(x) = 2x + 1 −√
4x2 + 5 c). f(x) = 3

√
x2 + 3

27x2 − 1
Solution: a) We are interested in the behavior as x → ±∞ and as x → 1 where the
denominator is zero.
and then

lim
x→1−

√
x2 + 2
x− 1 = −∞, lim

x→1+

√
x2 + 2
x− 1 =∞, lim

x→∞

√
x2 + 2
x− 1 = 1

and
lim

x→−∞

√
x2 + 2
x− 1 = −1

∴ x = 1 is the vertical asymptote of f(x) =
√
x2 + 2
x− 1 and also y = 1 and y = −1 are

horizontal asymptote of f(x) =
√
x2 + 2
x− 1 .

c© Dejen K. 2020 13



1.1. DEFINITION OF LIMIT DBU

Special limit

• lim
x→0

1− cosx
x

= 0

• lim
x→+∞

(
1 + k

x

)mx
= emk

• lim
x→+∞

(
1 + 1

x

)x
= e

• lim
x→+∞

(
1− 1

x

)x
= 1
e

• lim
x→+∞

(
x

x+ k

)x
= 1
ek

• lim
x→0

(1 + x)
1
x = e

• lim
n→∞

n
n
√
n!

= e

• lim
n→∞

2n
√

2−
√

2 +
√

2 + ... +
√

2︸ ︷︷ ︸
n

= π

• lim
x→0

(
ax − 1
x

)
= ln a, ∀ a > 0

• lim
x→0

(
1 + a

(
e−x − 1

))− 1
x = ea

Exercise 1.3

Find the limit

1. lim
x→0

4x
sin 3x

2. lim
x→0

cos 3x– cosx
x2

3. lim
x→0

sin 5x– sin 3x
sinx

4. lim
x→0

sin ax
sin bx

5. lim
x→0

tanx– sinx
x3

6. lim
x→0+0

√
1– cosx
x

7. lim
n→∞

(
1 + 1

n

)n+5

8. lim
x→∞

(
1 + 1

x

)3x

9. lim
x→∞

(
1 + 6

x

)x
10. lim

x→0
x
√

1 + 3x

11. lim
x→∞

(
x+a
x–a

)x
12. lim

x→∞

(
x
x+1

)x
.

13. lim
x→∞

(
x+3
x–2

)x–1

14. lim
x→a

lnx– ln a
x–a ,

15. lim
x→0

(1 + sin x)
1
x

Solution:

1.

L = lim
x→0

4x
sin 3x

= lim
x→0

3 · 4x
3 sin 3x

= 4
3 lim
x→0

3x
sin 3x

= 4
3 lim
x→0

1
sin 3x

3x

= 4
3

lim
x→0

1
lim
x→0

sin 3x
3x

.

Since 3x→ 0 as x→ 0, we can write:

L = 4
3

lim
x→0

1
lim
x→0

sin 3x
3x

= 4
3 lim

3x→0
sin 3x

3x

= 4
3 · 1 = 4

3 .

2. We factor the numerator:

cos 3x– cosx = –2 sin 3x–x
2 sin 3x+ x

2
= –2 sin x sin 2x.

This yields

lim
x→0

cos 3x– cosx
x2 = lim

x→0

(–2 sin x sin 2x)
x2

= −2 lim
x→0

sin x
x
· lim
x→0

sin 2x
x

= −2 · 1 · lim
2x→0

2 sin 2x
2x

= −2 · 2 lim
2x→0

sin 2x
2x = –4.

3. We use the following trigonometric iden-
tity:

sin x– sin y = 2 sin x–y
2 cos x+ y

2 .
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Then we obtain

lim
x→0

sin 5x– sin 3x
sin x = lim

x→0

2 sin 5x–3x
2 cos 5x+3x

2
sin x

= lim
x→0

2 sin x cos 4x
sin x

= lim
x→0

(2 cos 4x) .

As cos 4x is a continuous function at
x = 0, then

lim
x→0

(2 cos 4x) = 2 lim
x→0

cos 4x

= 2 · cos (4 · 0) = 2 · 1 = 2.

4.

L = lim
x→0

sin ax
sin bx

= lim
x→0

(
sin ax
sin bx ·

a

b
· bx
ax

)

= lim
x→0

(
sin ax
ax

· bx

sin bx ·
a

b

)

= a

b

lim
x→0

sin ax
ax

lim
x→0

sin bx
bx

.

Obviously, ax→ 0 and bx→ 0 as x→ 0
. Then

L = a

b

lim
x→0

sin ax
ax

lim
x→0

sin bx
bx

= a

b
· 1

1 = a

b
.

5. We apply the following transformations:

L = lim
x→0

tan x– sin x
x3

= lim
x→0

sinx
cosx– sin x

x3

= lim
x→0

sin x
(

1
cosx–1

)
x3

= lim
x→0

sin x (1– cosx)
x3 cosx

= lim
x→0

[sin x
x
· 1– cosx
x2 cosx

]
.

As 1– cosx = 2sin2 x
2 , we have

L = lim
x→0

[sin x
x
· 1– cosx
x2 cosx

]
= lim

x→0

[
sin x
x
·

2sin2 x
2

x2 cosx

]

=
lim
x→0

sinx
x
· 2 lim

x→0
sin2 x

2
x2

lim
x→0

cosx .

Here

lim
x→0

sin x
x

= 1 and lim
x→0

cosx = 1.

Hence,

L = 2 lim
x→0

sin2 x
2

x2

= 2 lim
x→0

(
sin2 x

2
x2 · 4

4

)

= 2 lim
x→0

(
sin2 x

2
x2

4
· 1

4

)

= 1
2 lim
x→0

sin2 x
2(

x
2

)2 .

Here x
2 → 0 when x→ 0 , therefore,

L = 1
2 lim

x
2→0

(
sin x

2
x
2

)2

= 1
2 · 1

2 = 1
2 .

6. Use the trigonometric formula:

1– cosx = 2sin2x

2 .

Then the limit can be written in the form

L = lim
x→0+0

√
1– cosx
x

= lim
x→0+0

√
2sin2 x

2

x

=
√

2 lim
x→0+0

√
sin2 x

2

x

=
√

2 lim
x→0+0

√
sin2 x

2
x2

=
√

2 lim
x→0+0

√
sin2 x

2
x2 · 4

4

=
√

2 lim
x→0+0

√√√√sin2 x
2

x2

4
· 1√

4


=
√

2
2 lim

x→0+0

√√√√√sin2 x
2(

x
2

)2

= 1√
2

√√√√√ lim
x→0+0

sin2 x
2(

x
2

)2

= 1√
2

√√√√[ lim
x
2→0+0

(
sin x

2
x
2

)]2

= 1√
2
·
√

12 = 1√
2
.
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We used here the fact that the limit re-
mains the same when replacing x→ 0 to
x
2 → 0

7.

lim
n→∞

(
1 + 1

n

)n+5

= lim
n→∞

[(
1 + 1

n

)n(
1 + 1

n

)5]

= lim
n→∞

(
1 + 1

n

)n
· lim
n→∞

(
1 + 1

n

)5

= e · 1 = e.

8. By the product rule for limits, we obtain

lim
x→∞

(
1 + 1

x

)3x

= lim
x→∞

(
1 + 1

x

)x
· lim
x→∞

(
1 + 1

x

)x
· lim
x→∞

(
1 + 1

x

)x
= e · e · e = e3.

9. Substituting 6
x

= 1
y

, so that x = 6y and
y →∞ as x→∞ , we obtain

lim
x→∞

(
1 + 6

x

)x
= lim

y→∞

(
1 + 1

y

)6y

= lim
y→∞

[(
1 + 1

y

)y]6

=
[

lim
y→∞

(
1 + 1

y

)y]6

= e6.

10.

lim
x→0

x
√

1 + 3x = lim
x→0

(1 + 3x)
1
x

= lim
3x→0

(1 + 3x)
1

3x
·3 = lim

3x→0

[
(1 + 3x)

1
3x

]3
=
[

lim
3x→0

(1 + 3x)
1

3x

]3
= e3.

11. We first transform the base of the func-
tion:

L = lim
x→∞

(
x+ a

x–a

)x
= lim

x→∞

(
x–a+ 2a
x–a

)x
= lim

x→∞

(
1 + 2a

x–a

)x
.

Introduce the new variable: y = 2a
x–a . As

x→∞, y → 0 and, hence,

x–a = 2a
y
, x = a+ 2a

y
.

Substituting this into the function gives

L = lim
x→∞

(
1 + 2a

x–a

)x
= lim

y→0
(1 + y)a+ 2a

y

= lim
y→0

(1 + y)a · lim
y→0

(1 + y)
2a
y

= 1 · e2a = e2a.

12. First we transform the base:

L = lim
x→∞

(
x

x+ 1

)x
= lim

x→∞

(
x+ 1–1
x+ 1

)x
= lim

x→∞

(
1– 1
x+ 1

)x
.

Let – 1
x+1 = y. Then x+ 1 = – 1

y
, ⇒

x = – 1
y
–1 and y → 0, if x→∞.Now

we can find the limit:

L = lim
x→∞

(
1– 1
x+ 1

)x
= lim

y→0
(1 + y)– 1

y
–1

=
lim
y→0

(1 + y)– 1
y

lim
y→0

(1 + y)+1

=
lim
y→0

[
(1 + y)

1
y

]–1

1

=
[
lim
y→0

(1 + y)
1
y

]–1
= 1
e
.

13. We can transform this limit as follows:

L = lim
x→∞

(
x+ 3
x–2

)x–1

= lim
x→∞

(
x–2 + 5
x–2

)x–1

= lim
x→∞

(
1 + 5

x–2

)x–1

= lim
x→∞

[(
1 + 5

x–2

)x–2
5
] 5(x–1)

x–2

.
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Replace the variable:
5
x–2 = y, ⇒ x–2 = 5

y
, ⇒ x = 5

y
+ 2.

Here y → 0 as x→ 0 . Then the limit is

L = lim
x→∞

[(
1 + 5

x–2

)x–2
5
] 5(x–1)

x–2

= lim
y→0

[
(1 + y)

1
y

]y( 5
y

+2–1)

= lim
y→0

[
(1 + y)

1
y

]5+y

= lim
y→0

[
(1 + y)

1
y

]5
· lim
y→0

[
(1 + y)

1
y

]y
= lim

y→0

[
(1 + y)

1
y

]5
· lim
y→0

(1 + y)

= e5 · 1 = e5.

14. Let x–a = t . It is easy to see that t→ 0
as x→ a . Then

L = lim
x→a

ln x– ln a
x–a

= lim
t→0

ln (t+ a) – ln a
t

= lim
t→0

ln t+a
a

t

= lim
t→0

1
t

ln
(

1 + t

a

)
.

Make one more change of variable:
t

a
= z, z → 0 as t→ 0.

Hence, the limit becomes

L = lim
t→0

1
t

ln
(

1 + t

a

)
= lim

z→0

1
az

ln (1 + z)

= 1
a

lim
z→0

ln (1 + z)
1
z

= 1
a

ln
[
lim
z→0

(1 + z)
1
z

]
= 1
a

ln e = 1
a
.

15. The limit can be represented in the fol-
lowing form:

L = lim
x→0

(1 + sin x)
1
x

= lim
x→0

(1 + sin x)
1

sin x
· sin x

x

= lim
x→0

[
(1 + sin x)

1
sin x

] sin x
x
.

After taking logarithm, we have

lnL = ln
(

lim
x→0

[
(1 + sin x)

1
sin x

] sin x
x

)

= lim
x→0

(sin x
x

ln
[
(1 + sin x)

1
sin x

])
= lim

x→0

sin x
x
·lim
x→0

(
ln
[
(1 + sin x)

1
sin x

])
.

We notice that lim
x→0

sinx
x

= 1 . Besides
that, sin x → 0 as x → 0 , therefore,
we can replace the transition x → 0 in
the second limit with the equivalent limit
sin x→ 0 . This yields

lnL = 1 · lim
sinx→0

(
ln
[
(1 + sin x)

1
sin x

])
= ln lim

sinx→0

[
(1 + sin x)

1
sin x

]
.

As lim
sinx→0

(1 + sin x)
1

sin x = e

lnL = ln e = 1.

Thus, L = e

1.2 Continuity and One Sided Continuity
We are now ready to define the concept of a function being continuous. The idea is that we
want to say that a function is continuous if you can draw its graph without taking your pencil
off the page. But sometimes this will be true for some parts of a graph but not for others.
Therefore, we want to start by defining what it means for a function to be continuous at one
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point. The definition is simple, now that we have the concept of limits:
Definition 1.11: (continuity at a point)

If f(x) is defined on an open interval containing c, then f(x) is said to be continuous at
c if and only if

lim
x→c

f(x) = f(c).

Note that for f to be continuous at c, the definition in effect requires three conditions:

1. that f is defined at c , so f(c) exists,

2. the limit as x approaches c exists, and

3. the limit and f(c) are equal.

If any of these do not hold then f is not continuous at c.

The idea of the definition is that the point of the graph corresponding to c will be close to the
points of the graph corresponding to nearby x-values. Now we can define what it means for a
function to be continuous in general, not just at one point.

Definition 1.12

A function is said to be continuous on (a, b) if it is continuous at every point of the
interval (a, b) .

We often use the phrase ”the function is continuous” to mean that the function is continuous at
every real number. This would be the same as saying the function was continuous on (−∞,∞),
but it is a bit more convenient to simply say ”continuous”.

Note that, by what we already know, the limit of a rational, exponential, trigonometric or
logarithmic function at a point is just its value at that point, so long as it’s defined there. So,
all such functions are continuous wherever they’re defined. (Of course, they can’t be continuous
where they’re not defined!)

1.2.1 Discontinuities
A discontinuity is a point where a function is not continuous. There are lots of possible ways
this could happen, of course. Here we’ll just discuss two simple ways.

1.2.2 Removable discontinuities

The function f(x) = x2 − 9
x− 3 is not continuous at x = 3. It is discontinuous at that point be-

cause the fraction then becomes 0
0 , which is undefined. Therefore the function fails the first

of our three conditions for continuity at the point 3, 3 is just not in its domain.

However, we say that this discontinuity is removable. This is because, if we modify the
function at that point, we can eliminate the discontinuity and make the function continu-
ous. To see how to make the function f(x) continuous, we have to simplify f(x) , getting

f(x) = x2 − 9
x− 3 = (x+ 3)(x− 3)

(x− 3) = x+ 3
1 · x− 3

x− 3 . We can define a new function g(x)) where
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g(x) = x+ 3 . Note that the function g(x)) is not the same as the original function f(x) ,
because g(x) is defined at x = 3 , while f(x) is not. Thus, g(x) is continuous at x = 3 , since
lim
x→3

(x+ 3) = 6 = g(3) . However, whenever x 6= 3 , f(x) = g(x); all we did to f to get g was
to make it defined at x = 3.

In fact, this kind of simplification is often possible with a discontinuity in a rational function.
We can divide the numerator and the denominator by a common factor (in our example x− 3
to get a function which is the same except where that common factor was 0 (in our example
at x = 3. This new function will be identical to the old except for being defined at new points
where previously we had division by 0.

However, this is not possible in every case. For example, the function f(x) = x− 3
x2 − 6x+ 9 has

a common factor of x− 3 in both the numerator and denominator, but when you simplify you
are left with g(x) = 1

x− 3, which is still not defined at x = 3. In this case the domain of f(x)
and g(x) are the same, and they are equal everywhere they are defined, so they are in fact the
same function. The reason that g(x) differed from f(x) in the first example was because we
could take it to have a larger domain and not simply that the formulas defining f(x) and g(x)
were different.

1.2.3 Jump discontinuities
Illustration of a jump discontinuity

Not all discontinuities can be removed from a function. Consider this function: ot all discon-
tinuities can be removed from a function. Consider this function: k(x) =

{
1 if x > 0
−1 if x ≤ 0 Since

lim
x→0

k(x) does not exist, there is no way to redefine k at one point so that it will be continuous
at 0. These sorts of discontinuities are called nonremovable discontinuities.

Note, however, that both one-sided limits exist; lim
x→0−

k(x) = −1 and lim
x→0+

k(x) = 1 . The
problem is that they are not equal, so the graph ”jumps” from one side of 0 to the other. In
such a case, we say the function has a jump discontinuity. (Note that a jump discontinuity is
a kind of nonremovable discontinuity.)

One-Sided Continuity

Just as a function can have a one-sided limit, a function can be continuous from a particular
side. For a function to be continuous at a point from a given side, we need the following three
conditions:

1. the function is defined at the point,
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2. the function has a limit from that side at that point and

3. the one-sided limit equals the value of the function at the point.
A function f(x) is
• Left-continuous at x = c if lim

x→c−
f(x) = f(c)

• Right-continuous at x = c if lim
x→c+

f(x) = f(c).

A function will be continuous at a point if and only if it is continuous from both sides at that
point. Now we can define what it means for a function to be continuous on a closed interval.

Definition 1.13

(continuity on a closed interval) A function is said to be continuous on [a, b] if and only
if

1. it is continuous on (a, b),

2. it is continuous from the right at a and

3. it is continuous from the left at b.

Notice that, if a function is continuous, then it is continuous on every closed interval con-
tained in its domain.

REMARK: The discontinuities in parts (b) and (c) are called removable discontinuities be-
cause we could remove them by redefining f at just the single number 0. The discontinuity in
part (d) is called jump discontinuity because the function ”jumps” from one value to another.
The discontinuities in parts (e) and (f) are called infinite or essential discontinuities.

Exercise 1.4

If the function f (x) =

cos (2πx− a) , x ≤ −1
x3 + 1, x ≥ −1

is continuous, what is the value of a?

Solution:
We calculate the left-hand and right-hand limits at x = −1 .

lim
x→–1–0

f (x) = lim
x→–1–0

cos (2πx–a)

= cos (–2π–a) = cos a,

The function will be continuous at x = −1 , if

lim
x→–1–0

f (x) = lim
x→–1+0

f (x) or cos a = 0.

Hence,
a = π

2 + πn, n ∈ Z.
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Exercise 1.5

Let f (x) =


x2 + 2, x ≤ 0
ax+ b, 0 ≤ x ≤ 1
3 + 2x–x2, x ≥ 1

Determine a and b so that the function f(x) is

continuous everywhere.

Solution: Solution. The left-side limit at x = 0

lim
x→0–0

f (x) = lim
x→0–0

(
x2 + 2

)
= 2.

is Then the value of ax+ b at x = 0 must be equal to 2.

ax+ b = 2, ⇒ a · 0 + b = 2, ⇒ b = 2.

Similarly, the right-side limit at x = 1 is

lim
x→1+0

f (x)

= lim
x→1+0

(
3 + 2x–x2

)
= 3 + 2–1 = 4.

As seen, the value of ax+ 2 at x = 1 must be equal to 4.

ax+ 2 = 4, ⇒ a · 1 + 2 = 4, ⇒ a = 2.

For given values of a and b , the function f(x) is continuous. The graph of the function

is sketched in Figure .

1.3 Limit Exercises
1. Evaluate lim

x→2
(4x2 − 3x+ 1)

Since this is a polynomial, two can sim-
ply be plugged in. This results in
4(4)− 2(3) + 1 = 16− 6 + 1 = 11

2. Evaluate lim
x→5

(x2) 52 = 25

One-Sided Limits
Evaluate the following limits or state that the
limit does not exist.

3. lim
x→0−

x3 + x2

x3 + 2x2

Factor as x
2

x2
x+ 1
x+ 2. In this form we can see that

there is a removable discontinuity at x=0 and
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that the limit is 1
2

4. lim
x→7−

|x2 + x| − x

|72 + 7| − 7 = 49

5. lim
x→−1−

√
1− x2√

1− x2 is defined if x2 < 1 , so the limit is√
1− 12 = 0

6. lim
x→−1+

√
1− x2√

1− x2 is not defined if x2 > 1, so the limit
does not exist.

Two-Sided Limits
Evaluate the following limits or state that the
limit does not exist.

7. lim
x→−1

1
x− 1

−1
2

8. lim
x→4

1
x− 4

lim
x→4−

1
x− 4 = −∞ lim

x→4+

1
x− 4 = +∞ The limit

does not exist.

9. lim
x→2

1
x− 2

lim
x→2−

1
x− 2 = −∞ lim

x→2+

1
x− 2 = +∞.The limit

does not exist.

10. lim
x→−3

x2 − 9
x+ 3

= lim
x→−3

(x+ 3)(x− 3)
x+ 3 = lim

x→−3
x− 3

= −3− 3 = −6

11. lim
x→3

x2 − 9
x− 3

lim
x→3

(x− 3)(x+ 3)
x− 3 = lim

x→3
x+ 3 = 3 + 3 = 6

12. lim
x→−1

x2 + 2x+ 1
x+ 1

lim
x→−1

(x+ 1)(x+ 1)
x+ 1

= lim
x→−1

x+ 1 = −1 + 1 = 0

13. lim
x→−1

x3 + 1
x+ 1

lim
x→−1

(x2 − x+ 1)(x+ 1)
x+ 1

= lim
x→−1

x2 − x+ 1 = (−1)2 − (−1) + 1
= 1 + 1 + 1 = 3

14. lim
x→4

x2 + 5x− 36
x2 − 16

lim
x→4

(x− 4)(x+ 9)
(x− 4)(x+ 4) = lim

x→4

x+ 9
x+ 4 = 4 + 9

4 + 4 = 13
8

15. lim
x→25

x− 25√
x− 5

lim
x→25

(
√
x− 5)(

√
x+ 5)√

x− 5
= limx→25

√
x+ 5) =

√
25 + 5) = 5 + 5 = 10

16. lim
x→0

|x|
x

lim
x→0−

|x|
x

= limx→0−
−x
x = limx→0− −1 = −1

lim
x→0+

|x|
x

= lim
x→0+

x

x
= lim

x→0+
1 = 1. The limit

does not exist.

17. lim
x→2

1
(x− 2)2

As x approaches 2, the denominator will be a
very small positive number, so the whole frac-
tion will be a very large positive number. Thus,
the limit is ∞.

18. lim
x→3

√
x2 + 16
x− 3

As x approaches 3, the numerator goes to 5
and the denominator goes to 0. Depending on
whether you approach 3 from the left or the
right, the denominator will be either a very
small negative number, or a very small positive
number. So the limit from the left is −∞ and
the limit from the right is +∞. Thus, the limit
does not exist.

19. lim
x→−2

3x2 − 8x− 3
2x2 − 18

3(−2)2 − 8(−2)− 3
2(−2)2 − 18

= 3(4)+16−3
2(4)−18 = 12+16−3

8−18 = 25
−10 = −5

2

20. lim
x→2

x2 + 2x+ 1
x2 − 2x+ 1

22 + 2(2) + 1
22 − 2(2) + 1 = 4 + 4 + 1

4− 4 + 1 = 9
1 = 9

21. lim
x→3

x+ 3
x2 − 9

lim
x→3

x+ 3
(x+ 3)(x− 3) = lim

x→3

1
x− 3 lim

x→3−

1
x− 3 = −∞

lim
x→3+

1
x− 3 = +∞. The limit does not exist.

22. lim
x→−1

x+ 1
x2 + x

lim
x→−1

x+ 1
x(x+ 1) = lim

x→−1

1
x

= 1
−1 = −1

23. lim
x→1

1
x2 + 1

1
12 + 1 = 1

1 + 1 = 1
2

24. lim
x→1

x3 + 5x− 1
2− x

13 + 5(1)− 1
2− 1 = 1 + 5− 1

1 = 6− 1 = 5

25. lim
x→1

x2 − 1
x2 + 2x− 3

lim
x→1

(x− 1)(x+ 1)
(x− 1)(x+ 3) = lim

x→1

x+ 1
x+ 3 = 1 + 1

1 + 3 = 2
4 = 1

2
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26. lim
x→1

5x
x2 + 2x− 3

Notice that as x approaches 1, the numerator
approaches 5 while the denominator approaches
0. However, if you approach from below, the de-
nominator is negative, and if you approach from
above, the denominator is positive. So the lim-
its from the left and right will be −∞ and +∞
respectively. Thus, the limit does not exist.

Limits to Infinity

Evaluate the following limits or state that the
limit does not exist.

27. lim
x→∞

−x+ π

x2 + 3x+ 2
This rational function is bottom-heavy, so the
limit is 0.

28. lim
x→−∞

x2 + 2x+ 1
3x2 + 1

This rational function has evenly matched pow-
ers of x in the numerator and denominator, so
the limit will be the ratio of the coefficients, i.e.
1
3 .

29. lim
x→−∞

3x2 + x

2x2 − 15
Balanced powers in the numerator and denomi-
nator, so the limit is the ratio of the coefficients,
i.e. 3

2 .

30. lim
x→−∞

3x2 − 2x+ 1
This is a top-heavy rational function, where the
exponent of the ratio of the leading terms is 2.
Since it is even, the limit will be ∞.

31. lim
x→∞

2x2 − 32
x3 − 64

Bottom-heavy rational function, so the limit is
0.

32. lim
x→∞

6
This is a rational function, as can be seen by

writing it in the form 6x0

1x0 . Since the powers of
x in the numerator and denominator are evenly
matched, the limit will be the ratio of the coef-
ficients, i.e. 6 .

33. lim
x→∞

3x2 + 4x
x4 + 2

Bottom-heavy, so the limit is 0.

34. lim
x→−∞

2x+ 3x2 + 1
2x2 + 3

Evenly matched highest powers of x in the nu-
merator and denominator, so the limit will be
the ratio of the corresponding coefficients, i.e.
3
2 .

35. lim
x→−∞

x3 − 3x2 + 1
3x2 + x+ 5

Top-heavy rational function, where the expo-
nent of the ratio of the leading terms is 1, so
the limit is −∞.

36. lim
x→∞

x2 + 2
x3 − 2

Bottom-heavy, so the limit is 0.

Limits of Piecewise Functions

Evaluate the following limits or state that the
limit does not exist.

37. Consider the function f(x) =
{

(x− 2)2 if x < 2
x− 3 if x ≥ 2.

(a) lim
x→2−

f(x)

(2− 2)2 = 0
(b) lim

x→2+
f(x)

2− 3 = −1
(c) lim

x→2
f(x)

Since the limits from the left and right don’t
match, the limit does not exist.

38. Consider the function

g(x) =


−2x+ 1 if x ≤ 0
x+ 1 if 0 < x < 4
x2 + 2 if x ≥ 4.

.

(a) lim
x→4+

g(x)

42 + 2 = 16 + 2 = 18
(b) lim

x→4−
g(x) 4 + 1 = 5

(c) lim
x→0+

g(x) 0 + 1 = 1

(d) lim
x→0−

g(x)
−2(0) + 1 = 1

(e) lim
x→0

g(x) Since the left and right limits
match, the overall limit is also 1 .

(f) lim
x→1

g(x)

39. Consider the function h(x) =


2x− 3 if x < 2
8 if x = 2
−x+ 3 if x > 2.

(a) lim
x→0

h(x)
2(0)− 3 = −3

(b) lim
x→2−

h(x)
2(2)− 3 = 4− 3 = 1

(c) lim
x→2+

h(x)
−(2) + 3 = 1

(d) lim
x→2

h(x)
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1.3. LIMIT EXERCISES DBU

Since the limits from the right and left match,
the overall limit is 1 . Note that in this case, the
limit at 2 does not match the function value at
2, so the function is discontinuous at this point,
hence the function is non differentiable at this
point as well.

40. The graph of a function g is shown.

(a) At which points a in (0, 1, 2, 3, 4, 5) is g
continuous?

(b) At which points a in (0, 1, 2, 3, 4, 5) is g
continuous from the right?

(c) At which points a in (0, 1, 2, 3, 4, 5) is g
continuous from the left?
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